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Accurate estimation of cell composition in bulk
expression through robust integration of single-cell
information
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Jae Hoon Sul1,4, Kirsi H. Pietiläinen5,6, Päivi Pajukanta1,2,7✉ & Eran Halperin2,3,8,9✉

We present Bisque, a tool for estimating cell type proportions in bulk expression. Bisque

implements a regression-based approach that utilizes single-cell RNA-seq (scRNA-seq) or

single-nucleus RNA-seq (snRNA-seq) data to generate a reference expression profile and

learn gene-specific bulk expression transformations to robustly decompose RNA-seq data.

These transformations significantly improve decomposition performance compared to

existing methods when there is significant technical variation in the generation of the

reference profile and observed bulk expression. Importantly, compared to existing methods,

our approach is extremely efficient, making it suitable for the analysis of large genomic

datasets that are becoming ubiquitous. When applied to subcutaneous adipose and dorso-

lateral prefrontal cortex expression datasets with both bulk RNA-seq and snRNA-seq data,

Bisque replicates previously reported associations between cell type proportions and mea-

sured phenotypes across abundant and rare cell types. We further propose an additional

mode of operation that merely requires a set of known marker genes.
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Bulk RNA-seq experiments typically measure total gene
expression from heterogeneous tissues, such as tumor and
blood samples1,2. Variability in cell-type composition can

significantly confound analyses of these data, such as in identi-
fication of expression quantitative trait loci (eQTLs) or differen-
tially expressed genes3. Cell-type heterogeneity may also be of
interest in profiling changes in tissue composition associated with
disease, such as cancer4 or diabetes5. In addition, measures of cell
composition can be leveraged to identify cell-specific eQTLs6,7 or
differential expression6 from bulk data.

Traditional methods for determining cell-type composition,
such as immunohistochemistry or flow cytometry, rely on a
limited set of molecular markers and lack in scalability relative to
the current rate of data generation8. Single-cell technologies
provide a high-resolution view into cellular heterogeneity and
cell-type-specific expression9–11. However, these experiments
remain costly and noisy compared to bulk RNA-seq12. Collection
of bulk expression data remains an attractive approach for
identifying population-level associations, such as differential
expression regardless of cell-type specificity. Moreover, many
bulk RNA-seq studies that have been performed in recent years
resulted in a large body of data that is available public databases
such as dbGAP and GEO. Given the wide availability of these
bulk data, the estimation of cell-type proportions, often termed
decomposition, can be used to extract large-scale cell-type-
specific information.

There exist a number of methods for decomposing bulk
expression, many of which are regression-based and leverage cell-
type-specific expression data as a reference profile13. CIBER-
SORT14 is a SVM-regression-based approach, originally designed
for microarray data that utilizes a reference generated from
purified cell populations. A major limitation of this approach is
the reliance on sorting cells to estimate a reference gene expres-
sion panel. BSEQ-sc15 instead generates a reference profile from
single-cell expression data that is used in the CIBERSORT model.
MuSiC16 also leverages single-cell expression as a reference,
instead using a weighted non-negative least-squares regression
(NNLS) model for decomposition, with improved performance
over BSEQ-sc in several datasets.

The distinct nature of the technologies used to generate bulk
and single-cell sequencing data may present an issue for
decomposition models that assume a direct proportional rela-
tionship between the single-cell-based reference and observed
bulk mixture. For example, the capture of mRNA and chemistry
of library preparation can differ significantly between bulk tissue
and single-cell RNA-seq methods, as well as between different
single-cell technologies17,18. Moreover, some technologies may be
measuring different parts of the transcriptome, such as nuclear
pre-mRNA in single-nucleus RNA-seq (snRNA-seq) experiments
as opposed to cellular and extra-cellular mRNA observed in
traditional bulk RNA-seq experiments. As we show later, these
differences may introduce gene-specific biases that break down
the correlation between cell-type-specific and bulk tissue mea-
surements. Thus, while single-cell RNA-seq technologies have
provided unprecedented resolution in identifying expression
profiles of cell types in heterogeneous tissues, these profiles
generally may not follow the direct proportionality assumptions
of regression-based methods, as we demonstrate here.

We present Bisque, a highly efficient tool to measure cellular
heterogeneity in bulk expression through robust integration of
single-cell information, accounting for biases introduced in the
single-cell sequencing protocols. The goal of Bisque is to inte-
grate the different chemistries/technologies of single-cell and
bulk tissue RNA-seq to estimate cell-type proportions from
tissue-level gene expression measurements across a larger set of
samples. Our reference-based model decomposes bulk samples

using a single-cell-based reference profile and, while not
required, can leverage single-cell and bulk measurements for the
same samples for further improved decomposition accuracy.
This approach employs gene-specific transformations of bulk
expression to account for biases in sequencing technologies as
described above. When a reference profile is not available, we
propose BisqueMarker, a semi-supervised model that extracts
trends in cellular composition from normalized bulk expression
samples using only cell-specific marker genes that could be
obtained using single-cell data. We demonstrate using simulated
and real datasets from brain and adipose tissue that our method
is significantly more accurate than existing methods. Further-
more, it is extremely efficient, requiring seconds in cases where
other methods require hours; thus, it is scalable to large genomic
datasets that are now becoming available.

Results
Method overview (Bisque). A graphical overview of Bisque is
presented in Fig. 1. Our reference-based decomposition model
requires bulk RNA-seq counts data and a reference dataset with
read counts from single-cell RNA-seq. In addition, the single-cell
data should be labeled with cell types to be quantified. A reference
profile is generated by averaging read count abundances within
each cell type in the single-cell data. Given the reference profile
and cell proportions observed in the single-cell data, our method
learns gene-specific transformations of the bulk data to account
for technical biases between the sequencing technologies. Bisque
can then estimate cell proportions from the bulk RNA-seq data
using the reference and the transformed bulk expression data
using non-negative least-squares (NNLS) regression.

Evaluation of decomposition performance in adipose tissue.
We applied our method to 106 bulk RNA-seq subcutaneous
adipose tissue samples collected from both lean and obese indi-
viduals, where 6 samples have both bulk RNA-seq and snRNA-
seq data available (Table 1). Each of the participants gave a
written informed consent. The study protocol was approved by
the Ethics Committee at the Helsinki University Hospital, Hel-
sinki, Finland. Adipose tissue consists of several cell types,
including adipocytes that are expected to be the most abundant
population. Adipose tissue also contains structural cell types (i.e.
fibroblasts and endothelial cells) and immune cells (i.e. macro-
phages and T cells)19. These 5 cell-type populations were iden-
tified from the snRNA-seq data (Supplementary Fig. 1a).

We observed significant biases between the snRNA-seq and
bulk RNA-seq data in samples that had both data available. We
found that the linear relationship between the pseudo-bulk
(summed snRNA-seq reads across cells) and the true bulk
expression varied significantly by each gene (Fig. 2a). Specifically,
we observed best fit lines relating these expression levels between
technologies with a mean slope of roughly 0.30 and a variance in
slope of 5.67. In our model, a slope of 1 would indicate no bias
between technologies. We further investigated whether gene
expression differences between the bulk and snRNA-seq were the
same across individuals and experiments. Comparing log-ratios
of RNA-seq to snRNA-seq expression levels, we found that the
majority of gene biases were preserved across individuals, tissues,
and experiments (R= 0.75 across experiments) (Supplementary
Fig. 3), providing evidence that technological differences drive
consistent gene expression differences across bulk and snRNA-
seq methods.

We performed simulations based on the adipose snRNA-seq
data to demonstrate the effect of technology-based biases between
the reference profile and bulk expression on decomposition
performance. In these analyses, we benchmarked Bisque and
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three existing methods (MuSiC, BSEQ-sc, and CIBERSORT).
Briefly, we simulated bulk expression for 6 individuals by
summing the observed snRNA-seq read counts. To model
discordance between the reference and bulk, we applied gene-
specific linear transformations of the simulated bulk expression.
For each gene, the coefficient and intercept of the linear
transformation were sampled from half-normal distributions
with increasing variance. In this model, a higher variance
corresponds to a larger bias between sequencing experiments.
Although these transformations closely mirrored the Bisque
decomposition model, they utilized the true snRNA-seq counts
for each individual whereas Bisque learned these transformations
using the reference profile generated from averaging these counts
across all cells. Hence, this simulation framework introduced
additional noise that Bisque does not entirely model. We
evaluated decomposition performance by comparing proportion
estimates to the proportions observed in the snRNA-seq data in
terms of global Pearson correlation (R) and root-mean squared

deviation (RMSD). Owing to the small number of samples, we
applied leave-one-out cross-validation to predict the cell
composition of each individual using the remaining snRNA-seq
samples as training data for each method. In these simulations,
Bisque remained robust (R ≈ 0.85, RMSD ≈ 0.07) at higher levels
of simulated bias between the bulk and snRNA-seq-based
reference (Fig. 2b).

Next, we performed this cross-validation benchmark on the
observed bulk RNA-seq data for these 6 individuals and found
that Bisque (R= 0.923, RMSD= 0.074) provided significantly
improved global accuracy in detecting each cell type over existing
methods (Table 2, Supplementary Fig. 1b). MuSiC (R=−0.111,
RMSD= 0.427), BSEQ-sc (R=−0.113, RMSD= 0.432), and
CIBERSORT (R=−0.131, RMSD= 0.416) severely underesti-
mated the proportion of adipocytes (the most abundant
population in adipose tissue) while overestimating the endothelial
cell fraction. We also benchmarked CIBERSORTx20, which
employs a batch correction mode to account for biases in
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Fig. 1 Graphical overview of the Bisque decomposition method. We integrate single-cell and bulk expression by learning gene-specific bulk
transformations (pictured on right) that align the two datasets for accurate decomposition.

Table 1 Summary of snRNA-seq and bulk expression datasets used for benchmarking Bisque and existing methods.

Tissue Number of
samples

Bulk RNA-seq
platform

snRNA-seq
platform

snRNA-seq
samples

Total nuclei Average nuclei
per individual

Number of
cell types

Subcutaneous adipose 106 Illumina NovaSeq 10x Genomics
Chromium

6 10,947 1824 5

Dorsolateral
prefrontal cortex

636 Illumina HiSeq 10x Genomics
Chromium

8 68,028 8503 11
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sequencing technologies. Although CIBERSORTx (R= 0.687,
RMSD= 0.099) outperformed existing methods, Bisque provided
improved accuracy. It should be noted that cell-specific accuracy
is more informative than global R and RMSD; however, these
small sample sizes did not provide robust measures of within-cell-

type performance in this cross-validation framework (Supple-
mentary Fig. 1c). We were able to slightly improve the number of
detected cell populations by MuSiC, BSEQ-sc, and CIBERSORT
when we considered only snRNA-seq reads aligning to exonic
regions of the transcriptome, indicating that intronic reads
introduced increasing discrepancy between snRNA-seq and bulk
RNA-seq in the context of decomposition. However, given that a
significant portion of the nuclear transcriptome consists of pre-
mRNA, this filtering process removed over 40% of cells detected
in the snRNA-seq data. Moreover, Bisque provided improved
accuracy over existing methods using this exonic subset of the
snRNA-seq data (Supplementary Fig. 1d).

We then applied these decomposition methods to the
remaining 100 bulk samples and found that the distribution of
cell-proportion estimates produced by Bisque were most
concordant with the expected distribution inferred from the
limited number of snRNA-seq samples and previously reported
proportions21,22 (Fig. 3a). Although these benchmarks provided a
measure of calibration (i.e. the ability to detect cell populations in
expected ranges), they did not provide measurements of cell-
specific proportion accuracy across individuals. In order to
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Table 2 Leave-one-out cross-validation in subcutaneous
adipose using 6 samples with snRNA-seq and bulk RNA-seq
data available.

Method R RMSD

Bisque 0.923 ± 0.064 0.074 ± 0.034
CIBERSORTx 0.687 ± 0.450 0.099 ± 0.046
MuSiC −0.111 ± 0.182 0.427 ± 0.058
BSEQ-sc −0.113 ± 0.180 0.432 ± 0.058
CIBERSORT −0.131 ± 0.176 0.416 ± 0.059

Proportions based on snRNA-seq were used as a proxy for the true proportions. Performance
measured in Pearson correlation (R) and root-mean-square deviation (RMSD) across all 5
identified cell types in each sample. Reported values were averaged across the 6 samples with
standard deviation indicated. Bold values indicate the highest performing method with respect to
each metric. Source data are provided as a Source Data file.
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evaluate cell-specific accuracy, we replicated previously reported
associations between cell proportions and measured phenotypes.
Specifically, we compared cell-proportion estimates from each
method to body mass index (BMI) and Matsuda index, a measure
of insulin resistance. We measured the significance of these
association based on t-values estimated in a linear-mixed model
accounting for age, age-squared, and sex as fixed effects and
relatedness as a random effect.

Obesity is associated with adipocyte hypertrophy, the expan-
sion of the volume of fat cells23; thus, we expected a negative

association between adipocyte proportion and BMI. Bisque,
MuSiC, and CIBERSORTx produced adipocyte proportion
estimates that replicate this behavior, while BSEQ-sc and
CIBERSORT were unable to detect this cell population (Fig. 3b).
The adipocyte proportion estimates produced by Bisque (p=
0.030) and CIBERSORTx (p= 0.001) had a significant negative
association with BMI (Supplementary Table 1a). In addition,
macrophage abundance has been shown to increase in adipose
tissue with higher levels of obesity, concomitant with a state of
low grade inflammation24. Each method detected macrophage
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populations that positively associated with BMI; however, only
Bisque (p < 0.001), BSEQ-sc (p= 0.004), and CIBERSORTx (p=
0.034) reached significance (Supplementary Table 1b).

T cells were the least abundant cell-type population identified
from the snRNA-seq data, constituting around 4% of all
sequenced nuclei. The abundance of T cells has been observed
to positively correlate with insulin resistance25. Thus, we
compared decomposition estimates for T-cell proportions to
Matsuda index. As a lower Matsuda index indicates higher insulin
resistance, we expect a negative association between T-cell
proportion and Matsuda index. Proportion estimates produced
by Bisque and CIBERSORTx followed this trend while the
remaining existing methods did not identify T cells in the bulk
samples (Fig. 3c). We found this association significant for Bisque
(p= 0.002) and CIBERSORTx (p= 0.046) (Supplementary
Table 1c) after correcting for diabetes status, as Matsuda index
may not be informative in these individuals26.

Evaluation of decomposition performance in cortex tissue. We
also benchmarked these decomposition methods using expres-
sion data collected from the dorsolateral prefrontal cortex
(DLPFC). This dataset was generated by the Rush Alzheimer’s
Disease (AD) Center27 and includes 636 postmortem bulk RNA-
seq samples. The Religious Orders Study and Rush Memory and
Aging Project were approved by an IRB of Rush University
Medical Center. Both bulk RNA-seq and snRNA-seq data were
collected from 8 of the individuals (Table 1). Using the same
pipeline we used to process the adipose dataset, we identified
11 clusters: 3 neuronal subtypes, 2 interneuronal subtypes, 2
astrocyte subtypes, oligodendrocytes, oligodendrocyte progenitor
cells, and microglia (Supplementary Fig. 2a). We observed a
higher overlap in marker genes for these clusters than in those
identified in the adipose dataset (average of 10% of marker genes
shared between clusters in DLPFC compared to 3% in adipose)
(Supplementary Fig. 4a, b).

We again applied leave-one-out cross-validation on the 8
individuals with both RNA-seq and snRNA-seq data available. In
this example, we randomly sampled 25% of the nuclei in the
snRNA-seq data to accommodate CIBERSORTx (which is
currently web-based and restricts the size of files that can be
processed). Bisque was able to detect each cell population
identified from the snRNA-seq data with high global accuracy
(R= 0.924, RMSD= 0.029) while MuSiC (R=−0.192, RMSD=
0.173), BSEQ-sc (R= 0.098, RMSD= 0.120), and CIBERSORT
(R=−0.281, RMSD= 0.197) did not detect a number of
cell populations (Table 3, Supplementary Fig. 2b, c). Bisque
also provided higher accuracy than CIBERSORTx (R= 0.671,
RMSD= 0.070). However, we found that the performance of the

existing methods improved when estimates with subtypes were
summed together (Supplementary Fig. 2d). Although each
method was able to quantify major cell populations after
merging subtypes, Bisque was able to distinguish between these
closely related cell populations. Interestingly, we found that in
both adipose and DLPFC, endothelial cell proportions were
overestimated by each of the existing methods.

We applied these decomposition methods to the remaining 628
individuals and compared the distribution of estimates to the
proportions observed in the 8 snRNA-seq samples. We found
that Bisque was able to detect each cell population and produced
estimates that were closest in mean to the snRNA-seq observa-
tions (Fig. 4a). The increased accuracy of Bisque over existing
methods persisted when we merged closely related subtypes
(Supplementary Fig. 2e). Moreover, immunohistochemistry
(IHC) analyses on a 70 of these samples found similar
proportions of major cell populations28, confirming the relative
accuracy of snRNA-seq-based estimates of cell proportions.

Again, to determine cell-specific decomposition accuracy, we
replicated known associations between cell-type proportions and
measured phenotypes in the 628 individuals. For these analyses,
we compared cell-proportion estimates to each individual’s Braak
stage and physician cognitive diagnostic category at time of death.
Braak stage is a semiquantitative measure of neurofibrillary
tangles, ranging in value from 0 to 5 with increasing severity. The
cognitive diagnostic category provides a semiquantitative measure
of dementia severity, where a code of 1 indicates no cognitive
impairment and 5 indicates a confident diagnosis of AD by
physicians. We determined the significance of these associations
based on t-values estimated by a linear regression model that
accounted for age, age-squared, and sex.

Neuronal death is a hallmark symptom of AD29. Therefore, we
expected to find a negative association between cognitive
diagnosis and neuron proportion. We found that each decom-
position method provides estimates of total neuron proportion
that tend to decrease with cognitive diagnostic category (Fig. 4b).
Each method generates proportions with negative association
with cognitive diagnosis. Each method, excluding BSEQ-sc,
reached significance in this model (p ≤ 0.001 for each method)
(Supplementary Table 2a). As another example, we compared
each individual’s Braak stage to their estimated proportion of
microglia, a relatively small cell population that constituted
roughly 5% of the sequenced nuclei. Microglia activation has been
observed to increase with AD severity30. We used Braak stage as a
proxy for AD severity and expected a positive association between
microglia proportion and Braak stage. Bisque and MuSiC
provided estimates that follow this expected trend (Fig. 4c). Only
Bisque produced estimates with a significant positive association
(p= 0.001) (Supplementary Table 2b). Interestingly, we observed
a decrease in microglia proportions estimated by Bisque in Braak
stage 6 individuals, which has been previously observed in AD
patients31.

Runtime comparison of reference-based decomposition meth-
ods. Given the large amounts of transcriptomic data that are
becoming available, we also benchmarked these decomposition
methods in terms of runtime. In the subcutaneous adipose
dataset, which included 100 bulk RNA-seq samples and 6
snRNA-seq samples with about 1800 nuclei sequenced per indi-
vidual, Bisque was able to estimate cell proportions efficiently
compared to existing methods. Bisque (1 s) and MuSiC (1 s)
provided decomposition estimates faster than BSEQ-sc (26 s),
CIBERSORT (27 s), and CIBERSORTx (389 s) (Fig. 5a). Bisque
also provided improved efficiency in processing the reduced
DLPFC dataset, which included 628 bulk RNA-seq samples and 8

Table 3 Leave-one-out cross-validation in dorsolateral
prefrontal cortex using 8 samples with snRNA-seq and bulk
RNA-seq data available.

Method R RMSD

Bisque 0.924 ± 0.062 0.029 ± 0.010
CIBERSORTx 0.671 ± 0.153 0.070 ± 0.019
MuSiC −0.192 ± 0.107 0.173 ± 0.013
BSEQ-sc 0.098 ± 0.216 0.120 ± 0.023
CIBERSORT −0.281 ± 0.049 0.197 ± 0.012

Proportions based on snRNA-seq were used as a proxy for the true proportions. Performance
measured in Pearson correlation (R) and root-mean-square deviation across all 11 identified cell
types in each sample. Reported values were averaged across the 8 samples with standard
deviation indicated. We performed these experiments with 25% of the snRNA-seq data in order
to accommodate the file size limit of the current web-based implementation of CIBERSORTx.
Bold values indicate the highest performing method with respect to each metric. Source data are
provided as a Source Data file.
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snRNA-seq samples with around 2125 nuclei per individual.
Bisque (4 s) and MuSiC (10 s) estimated cell proportions rela-
tively quickly compared to BSEQ-sc (273 s), CIBERSORT (298 s),
and CIBERSORTx (6566 s) (Fig. 5b).

Robustness of the reference-based decomposition model. Our
reference-based decomposition method is based on the assumption
that cell populations are equally represented in single-cell and bulk

RNA sequencing of the same tissue samples. As this assumption
may be violated32, we explored the performance of our model as we
relaxed this assumption in simulations. First, we simulated snRNA-
seq data where cell proportions were increasingly biased. Using the
DLPFC snRNA-seq data, we downsampled or upsampled the cells
identified as microglia at varying levels and performed decom-
position. Indeed, the absolute estimates produced by Bisque pro-
pagated these shifts in snRNA-seq proportions. However, we found
that our estimated microglia proportions, regardless of these shifts,
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Fig. 4 Decomposition benchmark in human dorsolateral prefrontal cortex tissue. We randomly sampled 25% of the nuclei in the snRNA-seq data to
accommodate the file size limit of the web-based implementation of CIBERSORTx at the time of writing. a Comparison of decomposition estimates from 628
individuals with estimates from 8 individuals with snRNA-seq data available. Each color represents a benchmarked method. Boxes indicate the quartiles of
the estimated proportions with whiskers extending 1.5 times the interquartile range. Points are individual samples that are represented by the boxplot.
b, c Violin plots depicting association of decomposition estimates aggregated into major cell types with measured phenotypes in 628 individuals. Reported
‘rho’ corresponds to Spearman correlation and p-values indicate the significance of these correlations, with an asterisk denoting both an expected effect
direction and significance after correction for covariates. Examples shown are for the most abundant (neurons) and least abundant (microglia) populations
detected in the snRNA-seq data. Significance of associations reported in Supplementary Table 2. b Neuronal degeneration has been observed in patients
diagnosed with Alzheimer’s disease (AD). Cognitive diagnostic category measures a physician’s diagnosis of cognitive impairment (CI), with 0 indicating no
CI and 4 indicating a confident AD diagnosis. We expected a negative correlation between neuron proportion and cognitive diagnostic category. c Microglia
proportion has been observed to positively correlate with increased severity of AD symptoms, such as neurofibrillary tangles. Braak stage provides a
semiquantitative measure of tangle severity, so we expected an overall positive correlation between microglia proportion and Braak stage. In addition, a
decrease in microglia abundance has been previously reported at Braak stages 5 through 6 in AD patients. Only Bisque produced estimates with a significant
positive association (p = 0.001) after correcting for sex, age, and age-squared in a linear regression model. Source data are provided as a Source Data file.
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maintained an expected positive association with Braak stage. This
positive association served as evidence for the correlation between
these estimates and the true microglia proportions (Supplementary
Fig. 5a). Given these results, we suggest that users take note of this
behavior if both the mean abundances are important for down-
stream analysis and the single-cell reference data is known to be
significantly biased against specific cell populations of interest.

Next, we simulated a situation where an unknown cell
population contributes to bulk expression but is not represented
in the snRNA-seq reference data. For situations where this
unknown contribution varies across the bulk dataset, we
simulated bulk expression by mixing the observed bulk expres-
sion for the DLPFC dataset with increasing amounts of
expression observed in the adipose dataset. To determine the
effect of unknown cell populations on our model, we analyzed
the distribution of residual norms produced by the method. These
residual norms provide a measure of the difference between the
vector of observed bulk and expression reference weighted by
the estimated proportions across all genes for each individual. As
we increased the contribution from unknown cell types, the

residual norm values tend to increase (Supplementary Fig. 5b). In
our simulation framework, this variability in unknown cell-type
contribution could be qualitatively identified by the presence of a
multimodal residual norm distribution.

Given that single-cell datasets still remain relatively small
compared to bulk datasets, we also explored the impact of sample
size in the reference single-cell data on the performance of Bisque.
In the DLPFC dataset, we saw a drop in performance when using
less than four randomly selected snRNA-seq samples (Supple-
mentary Fig. 5c). This threshold is likely to differ between
experiments, though we recommend at least three single-cell
samples to generate reference data.

Finally, as marker gene selection can vary between studies, we
were interested in the performance of Bisque as we varied the
number of marker genes. Again, we measured cell-type propor-
tion estimation performance for microglia in the DLPFC dataset
by correlating the estimates with Braak stage, which is known to
have a positive association. We recalculated this correlation as we
removed marker genes for this cell type. We removed marker
genes in order of both decreasing and increasing log-fold change,
which provides a measure of the importance of marker genes for
identifying this cell type. In both procedures, we observe that as
we remove an increasing percentage of the 102 identified marker
genes, performance remains stable until a shared drop off point
around 75% (Supplementary Fig. 5d). As we observed this trend
in both marker gene removal schemes, we assume that a relatively
few number of marker genes, regardless of their log-fold change
magnitude, can be used to accurately estimate cell-type propor-
tions. These results suggest that as long as a core set of marker
genes are present, variations in less important marker genes will
have little effect on downstream analyses.

Marker-based decomposition using cell-type marker genes.
Although a reference profile from snRNA-seq can help to
decompose bulk-level gene expression, it may not be available for
the same dataset. The majority of bulk RNA-seq datasets do not
have corresponding snRNA-seq data in the same set of indivi-
duals. However, marker gene information from prior experiments
can still be applied to distinct expression datasets of the same
tissue. The basis of most decomposition methods relies on the
logic that as the proportion of a cell type varies across individuals,
the expression of its marker genes will tend to correlate in the
same direction as its cell-type proportion. This linear co-variation
can be captured in a principal components analysis (PCA). Under
the same argument, the more cell-type-specific a marker gene is,
the more its expression will reflect its cell-type proportion. These
observations form the basis for BisqueMarker, a weighted PCA-
based (wPCA) decomposition approach. Genes that are more
specifically expressed within a cell type will provide more infor-
mation than genes with shared expression across cell types. To
estimate cell-type proportions without the use of cell-type-specific
gene expression information, we applied wPCA to bulk-level
adipose tissue expression.

For each cell type, we extracted the first PC from a wPCA of
the expression matrix of its markers. The expression matrix was
corrected for the first global expression PC as a covariate so that
wPCA estimates would not reflect technical variation. We first
confirmed that these genes were distinct across cell types. If 2 cell
types share a high proportion of marker genes, the wPCA
estimates from bulk RNA-seq will correlate highly. We then
investigated whether the second or third PC could have
represented cell-type proportions. The percent of variance
explained by the first PC was typically 30–60% across adipose
cell types, and additionally, over 90% of the markers correlated in
the same direction as the first PC. In contrast, roughly 50–70% of
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markers correlated in the same direction as the second or third
PC. As performed for reference-based decomposition, we
correlated phenotypes with cell-type proportions estimated by
BisqueMarker. We identified the same associations as with
reference-based decomposition, demonstrating its validity when a
reference is not available (Supplementary Table 1). Similarly, we
observed the same trends between estimated cell-type abundances
and phenotypes as we did using our reference-based method in
the DLPFC cohort (Supplementary Table 2).

Discussion
Bisque effectively leverages single-cell information to decompose
bulk expression samples, outperforming existing methods in
datasets with snRNA-seq data available. In simulations, we
demonstrated that the decomposition accuracy of Bisque is robust
to increasing variation between the generation of the reference
profile and bulk expression, which is a significant issue when
comparing snRNA-seq and bulk RNA-seq data. In observed bulk
expression, our reference-based method accurately estimates cell
proportions that are consistent with previously reported dis-
tributions and reliably detects rare cell types. We found that these
estimates consistently follow expected trends with measured
phenotypes, suggesting that cell-specific estimates of proportion
are sufficiently accurate to extract relevant biological signals. In
addition, differences in tissue structure can lead to significant
differences in the quality of single-cell expression data33. We
demonstrated the improved performance of our method in adi-
pose and DLPFC, two distinct tissues, suggesting that Bisque is
robust across different tissue types.

The cell-type proportion estimates determined by Bisque may
be utilized to effectively identify cell-type-specific interactions,
such as expression quantitative trait loci (eQTLs), and adjust for
confounding effects from variability in cell populations. With this
reference-based approach, single-cell sequencing of a subset of
samples from large-scale bulk expression cohorts can provide
high power to detect cell-specific associations in complex phe-
notypes and diseases.

However, we note that there are limitations to this reference-
based method that users should consider. First, if the number of
individuals with single-cell data available is small, the reference
profile and gene-specific transformations may become unreliable.
In addition, a key assumption of our transformation framework is
that single-cell-based estimates of cell proportions accurately
reflect the true proportions we wish to estimate. As a result of this
assumption, Bisque provides estimates of cell proportions
reported by the single-cell technology used to generate the
reference data. Given that snRNA-seq can provide less bias in
isolating specific cell types compared to scRNA-seq34,35, we
expect these estimates to be useful for downstream analyses such
as those previously discussed. Nevertheless, the accuracy of Bis-
que may decrease if the proportion of cell types captured by
single-cell experiments differs significantly from the true phy-
siological distributions. Therefore, we advise users to take caution
if there is a known significant bias in the single-cell measurements
of a tissue, such as severe underrepresentation of a cell type of
interest32,35, that can affect downstream analysis. Our results
demonstrate that even with these limitations, Bisque can be used
to provide cell-type specific biological insight in relevant datasets.

In cases where these described issues may be significant, Bis-
queMarker provides cell-type abundance estimations using only
known marker genes. Although this reference-free method may
be less accurate than reference-based methods, it does not depend
on single-cell based estimates of cell proportions or expression
profiles, but rather on the fact that the expression in certain genes
differs across different cell types; moreover, this method also does

not model explicitly the expression level, and it is thus robust to
biases in the single-cell sequencing protocol. We found that
BisqueMarker estimates followed expected trends with measured
phenotypes; however, it should be noted that this method esti-
mates relative differences in abundances that cannot be compared
across cell types. Also, given the semi-supervised nature of this
method, these cell-type abundance estimates may include signals
from technical or other biological variation in the data. Therefore,
we highly suggest applying this method to data that is properly
normalized with sources of undesired variation removed.

Methods
Processing bulk expression data. Paired-end reads were aligned with STAR
v2.5.1 using default options. Gene counts were quantified using featureCounts
v1.6.3. For featureCounts, fragments were counted at the gene-name level. Align-
ment and gene counts were generated against the GRCh38.p12 genome assembly.
STAR v2.5.1 and GRCh38.p12 were included with CellRanger 3.0.2, which was
used to process the single-nucleus data.

Processing single-nucleus expression data. Reads from single nuclei sequenced
on the 10x Genomics Chromium platform were aligned and quantified using the
CellRanger 3.0.2 count function against the GRCh38.p12 genome assembly. To
account for reads aligning to both exonic and intronic regions, each gene transcript
in this reference assembly was relabeled as an exon as CellRanger counts exonic
reads only. We perform this additional step since snRNA-seq captures both mature
mRNA and pre-mRNA, the latter of which includes intronic regions.

After aggregating each single-nucleus sample with the CellRanger aggr function,
the full dataset was processed using Seurat v3.0.036. The data were initially filtered
for genes expressed in at least 3 cells and filtered for cells with reads quantified for
between 200 and 2500 genes. We further filtered for cells that had percentage of
counts coming from mitochondrial genes less than or equal to 5%. The data were
normalized, scaled, and corrected for mitochondrial read percentages with
sctransform v0.2.037 using default options.

To identify clusters, Seurat employs a shared nearest neighbor approach. We
identified clusters using the top 10 principal components of the processed
expression data with resolution set at 0.2. The resolution parameter controls the
number of clusters that will be identified, and suggested values vary depending on
the size and quality of the dataset. We chose a value that produced 6 clusters in the
adipose dataset and 13 clusters in the DLPFC dataset and visualized the clustering
results with UMAP38.

Marker genes were identified by determining the average log-fold change of
expression of each cluster compared to the rest of the cells. We identified marker
genes as those with an average log-fold change above 0.25. The significance of the
differential expression of these genes was determined using a Wilcoxon rank sum
test. Only genes that were detected in at least 25% of cells were considered. Clusters
with many mitochondrial genes as markers (nine genes detected in both datasets)
were removed from both datasets. In addition, a cluster with only three marker
genes was removed from the DLPFC datasets. Finally, we remove mitochondrial
genes from the list of marker genes for decomposition as we assume reads aligning
to the mitochondrial genome originate from extra-nuclear RNA in the snRNA-seq
dataset (targeting nuclear RNA).

Clusters were labeled by considering cell types associated with the identified
marker genes. Marker genes were downloaded from PanglaoDB39 and filtered for
entries validated in human cells. For each gene, we count the possible cell-type
labels. Each cluster was labeled as the most frequent cell type across all of its
marker genes, with each label associated with a gene weighted by the average log-
fold change. If multiple clusters shared a cell-type label, we consider each cluster a
subtype of this label.

Exon-aligned reads were processed in the same exact procedure but snRNA-seq
data was aligned to just exonic regions. Cluster names were manually changed for
both datasets when aligned to exons to match the clusters from intronic reads as
well. Specifically, for clusters identified in the exonic data not found in the full data,
we relabeled as the label with the highest score found in the full data. These
relabeled clusters were similar in proportion to the corresponding cluster in the full
dataset.

Bisque reference-based decomposition model. We assume that only a subset of
genes are relevant for estimating cell-type composition. For the adipose and
DLPFC datasets, we selected the marker genes identified by Seurat as described
previously. Moreover, we filter out genes with zero variance in the single-cell data,
unexpressed genes in the bulk expression, and mitochondrial genes. We convert
the remaining gene counts to counts-per-million to account for variable sequencing
depth. For m genes and k cell types, a reference profile Z ∊ Rm × k is generated by
averaging relative abundances within each cell type across the entire single-cell
dataset.

Although there is a strong positive correlation between bulk and single-cell-
based pseudo-bulk (summed single-cell counts) expression data, we observe that
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the relationship is not one-to-one and varies between genes. This behavior
indicates that the distribution of observed bulk expression may significantly differ
from the distribution of the single-cell profile weighted by cell proportions. We
propose transforming the bulk data to maximize the global linear relationship
across all genes for improved decomposition. Our goal is to recover a one-to-one
relationship between the transformed bulk and expected convolutions of the
reference profile based on single-cell based estimates of cell proportions. This
transformed bulk expression better satisfies the assumptions of regression-based
approaches under sum-to-one constraints.

Cell-type proportions p ∊ Rk × n′ are determined by counting the cells with each
label in the single-cell data for n′ individuals. Given these proportions and the
reference profile Z, we calculate the pseudo-bulk for the single-cell samples as Y=
Zp, where Y ∊ Rm × n′. For each gene j, our goal is to transform the observed bulk
expression across all n bulk samples Xj ∊ Rn to match the mean and variance of Yj

∊ Rn′; hence, the transformation of Xj will be a linear transformation.
If individuals with both single-cell and bulk expression are available, we fit a

linear regression model to learn this transformation. Let X′j ∊ Rn′ denote the
expression values for these n′ overlapping individuals. We fit the following model
(with an intercept) and apply the model to the remaining bulk samples as our
transformation:

Yj ¼ βjX
0
j þ ϵj ð1Þ

If there are no single-cell samples that have bulk expression available, we
assume that the observed mean of Yj is the true mean of our goal distribution for
the transformed Xj. We further assume that the sample variance observed in Yj is
larger than the true variance of the goal distribution, as the number of single-cell
samples is typically small. We use a shrinkage estimator of the sample variance of
Yj that minimizes the mean squared error and results in a smaller variance than the
unbiased estimator:

σ̂2j ¼ 1
n0 þ 1

Xn0

i¼1

ðYi;j � �YjÞ2 ð2Þ

We transform the remaining bulk as follows:

Xj;transformed ¼
Xj � �Xj

σXj

σ̂j þ �Yj ð3Þ

where a bar indicates the mean value of the observed data and σXj is the unbiased
sample variance of Xj.

To estimate cell-type proportions, we apply non-negative least-squares
regression with an additional sum-to-one constraint to the transformed bulk data.
For individual i, we minimize the following with respect to the cell-proportion
estimate pi :

jjZpi � Xi;transformedjj2s:t:pi ≥ 0;
X

pi ¼ 1 ð4Þ

Simulating bulk expression based on single-nucleus counts. We simulate the
base bulk expression as the sum of all counts across cells/nuclei sequenced from an
individual. To introduce gene-specific variation between the bulk and single-cell
data, we sample a coefficient βj and an intercept αj from a half-normal (HN)
distributions:

βj � HNðσÞ þ 1 ð5Þ

αJ � HNðσÞ ð6Þ
At σ= 0, the base simulated bulk expression remains unchanged. We used a

HN distribution to ensure coefficients and intercepts are positive. Although our
method can handle negative coefficients, this simulation model assumes expression
levels have a positive correlation across technologies. We performed 10 replicates of
this data-generating process at each σ in 0, 5, 10, 20. Decomposition performance
on these data were measured in terms of global R and RMSD and plotted with 95%
confidence intervals based on bootstrapping.

Measuring significance of cell proportion-trait association. Reported associa-
tions were measured in terms of Spearman correlation. To determine the statistical
significance of these associations while accounting for possible confounding fac-
tors, we applied two approaches. For the adipose dataset, which consisted entirely
of twin pairs, we applied a linear-mixed-effects model (R nlme package) with
random effects accounting for family. For the DLPFC dataset, we assumed indi-
viduals were unrelated and fit a simple linear model (R base package). In each
model, we include cell-type proportion, age, age-squared, and sex as covariates. We
introduced an additional covariate for diabetes status when regressing Matsuda
index due to a known significant association between these two variables. We test
whether the cell proportion-effect estimates deviate significantly from 0 using a
t-test. Each R method implements the described model fitting and significance
testing.

Bisque marker-based decomposition model. In order to estimate cell-type
proportions across individuals without the use of a cell-type-specific gene

expression panel as reference, we use a weighted PCA approach. BisqueMarker
requires a set of marker genes for each cell type as well as the specificity of each
marker determined by the fold-change from a differential expression analysis.
Typical single-cell RNA-seq workflows calculate marker genes and provide both
p-values and fold-changes, as in Seurat36. For each cell type, we take statistically
significant marker genes (FDR < 0.05) ranked by p-value. A weighted PCA is cal-
culated on the expression matrix using a subset of the marker genes by first scaling
the expression matrix and multiplying each gene column by its weight (the log-fold
change) XW, where X is the sample by gene expression matrix and W is a diagonal
matrix with entries equal to log-fold change of the corresponding gene. The bulk
expression X should be corrected for global covariates so that the proportion
estimates do not reflect this global variation. The first PC calculated from XW is
used as the estimate of the cell-type proportion. This allows cell-type-specific genes
to be prioritized over more broadly expressed genes. Alternatively, if weights are
not available, PCA can be run on the matrix X and the first PC can be used.

In order to select marker genes, we iteratively run the above PCA procedure on
a specified range of markers (from 25 to 200) and calculate the ratio of the first
eigenvalue to the second. We then select the number of marker genes to use that
maximizes this ratio. This procedure is similar to other methods which select the
number of markers to use by maximizing the condition number of the reference
matrix13.

Software used. Single-nucleus RNA-seq data were aligned using CellRanger 3.0.2
against the GRCh38.p12 genome assembly. Bulk RNA-seq data were aligned with
STAR 2.5.1 and quantified using featureCounts 1.6.3, both against the GRCh38.p12
genome assembly. R 3.5.1 was used for further processing and decomposition
experiments. The Seurat v3.0.0 R package was used to filter, cluster, and identify
cell-type marker genes from the single-nucleus data. The sctransform 0.2.0 R
package was used to normalize and scale the single-nucleus data. Bisque 1.0, xbioc
0.1.7, Biobase 2.4.2, MuSiC 0.1.1, bseqsc 1.0, CIBERSORT v1.06, and CIBERT-
SORTx were all used for decomposition using the processed bulk and single-
nucleus RNA-seq data. The R nlme 3.1-127 package was used for linear-mixed-
model association. All visualizations and were generated with Python 3.7.2 using
Seaborn 0.9.0, Matplotlib 3.0.3, Pandas 0.24.2, and Numpy 1.16.2, sklearn 0.20.3,
and scipy 1.2.1.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The adipose data used in these analyses are available from the corresponding authors
upon reasonable request. The DLPFC data are available on Synapse (10.7303/
syn3219045). Single-nucleus RNA-seq data (https://www.synapse.org/#!Synapse:
syn16780177), bulk RNA-seq data (https://www.synapse.org/#!Synapse:syn3388564), and
phenotypes (https://www.synapse.org/#!Synapse:syn3191087) are available under
controlled use conditions set by human privacy regulations. A data use agreement is
required to access these data. The source data underlying Tables 2 and 3, Figs. 2–5,
Supplementary Tables 1 and 2, and Supplementary Figs. 1, 2, 3, 4, 5 are provided as a
Source Data file.

Code availability
Bisque is available as an R package named “BisqueRNA” that is available on CRAN and
Bioconda. The source code for this package is available at https://github.com/cozygene/
bisque and is under the GPL-3 license.
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